DEFINISI• Untuk setiap matriks persegi (bujur sangkar), ada satu bilangan tertentu yang disebut determinan • Determinan adalah jumlah semua hasil kali elementer bertanda dari suatu matriks bujur sangkar. Disimbolkan dengan: det A A • Metode untuk menghitung determinan matriks: 1. Metode Sarrus 2. Ekspansi Kofaktor (Teorema Laplace)
Dalam menentukkan determinan suatu matriks persegi kita dapat menggunakkan metode Sarrus Baca Menentukan Determinan Matriks Berordo 2x2 dan 3x3. Selain itu, kita juga dapat menggunakan metode Ekspansi Kofaktor. Dengan metode ini, kita dapat menentukan tidak hanya determinan matriks ordo 2×2 atau 3×3 tapi digunakan untuk matriks yang berordo lebih besar lagi seperti, 4×4, 5×5 dan seterusnya. Namun, apa sebenarnya kofaktor tersebut? Jika kita berbicara kofaktor tentu tidak terlepas dari yang namanya minor. Selain dalam penentuan determinan, kofaktor juga diperlukan dalam menentukkan invers suatu matriks. Untuk lebih jelasnya mengenai Minor dan Kofaktor perhatikan definisi berikut. Definisi Jika A adalah matriks kuadrat, maka minor entri aij dinyatakan oleh Mij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Bilangan -1i+jMij dinyatakan oleh Cij dan dinamakan kofaktor entri aij. Untuk lebih memahaminnya perhatikan contoh berikut Tentukkan minor dan kofaktor dari matriks Penyelesaian Untuk menentukkan minor M11 berarti kita harus menghapus/coret elemen baris pertama dan kolom pertama dan tentukan determinan submatriks hasil penghapusan/coret tadi. Untuk M12, kita hapus elemen baris pertama dan kolom kedua dan mencari determinan submatriks tersebut dan demikian seterusnya Sedangkan, kofaktor kita tentukan dengan rumus Cij = -1i+jMij C11 = -11+1-9 = -9 C12 = -11+2-7 = 7 C13 = -11+3-8 = -8 C21 = -12+1-26 = 26 C22 = -12+2-16 = -16 C23 = -12+3-2 = 2 C31 = -13+12 = 2 C32 = -13+210 = -10 C33 = -13+36 = 6 Minor dan kofaktor sebenarnya hanya dibedakan oleh nilai positif dan negatif saja atau Mij = ±Cij. Untuk menentukan kapan nilainya positif dan negatif bisa dilihat dari hasil penjumlahan bari dan kolom pada pangkat -1 kofaktor apakah bernilai genap atau ganjil. Jika bernilai genap maka akan berilai positif sedangkan jika ganjil maka bernilai negatif. Sehingga, kita dapat menentukan kofaktor dengan lebih cepat tentunya. Kembali pada bahasan pokok yaitu menghitung determinan menggunakan metode Ekspansi Kofaktor. Sebelumnya pahami terlebih dahulu Teorema berikut. Teorema Determinan matriks A yang berukuran n x n dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap 1 ≤ i ≤ n dan 1 ≤ j ≤ n, maka detA = a1jC1j + a2jC2j + … + anjCnj ekspansi kofaktor sepanjang kolom ke-j atau detA = ai1Ci1 + ai2Ci2 + … + ainCin ekspansi kofaktor sepanjang baris ke-i Sebagai contoh kita gunakan matriks sebagai matriks A yang akan kita cari determinannya. Dalam hal ini, kita akan menggunakan ekspansi kofaktor baris pertama dan ekspansi kofaktor kolom kedua. Penyelesaian Untuk menentukan determinan matriks A menggunakan ekspansi kofaktor baris pertama berarti rumusnya menjadi detA = a11C11 + a12C12 + a13C13 Sehingga yang kita tentukan terlebih dahulu kofaktor C11,C12, dan karena kita telah menemukannya tadi jadi kita dapat menggunakannya langsung detA = a11C11 + a12C12 + a13C13 = 2-9 + 47 + 6-8 = -18 + 28 -48 = -38 Dengan menggunakan kspansi kofaktor kolom kedua detA = a12C12 + a22C22 + a32C32 = 47 + 1-16 + 5-10 = 28 -16 - 50 = -38 Untuk menentukan determinan 3x3, 4x4, 5x5 dan seterusnya kita dapat menggunakan metode ini. Namun, mungkin pengerjaannya mungkin akan menjadi lebih panjang.
Caramenghitung determinan matriks 3×3 dengan ekspansi kofaktor. 102 contoh soal cerita matriks berordo 3×3 jawabanmisalkan a merupakan suatu matriks persegi non singular maka invers matriks a dinotasikan dengan untuk lebih jelasnya mengenai cara menentukan invers matriks berordo 3 x 3 berikut adalah contoh soal dan jawaban dari invers
MenghitungDeterminan dengan Ekspansi Kofaktor Nilai determinan suatu matriks dapat juga di hitung dengan menggunakan ekspansi kofaktor sebeelum kita menghitung determinan suatu matriks.Namun sebelum itu,perhatikan terlebih dahulu beberapa definisi dan istilah-istilah yang berhubungan dengan kosep perhitungan tersebut. Definisi 1.
MenentukanDeterminan Matriks Dengan Perluasan Kofaktor - SEMANGATKU - https: Menentukan Determinan Matriks Berordo 2x2 dan 3x3). Selain itu, kita juga sanggup memakai metode Ekspansi Kofaktor. Dengan metode ini, kita sanggup memilih tidak hanya determinan matriks ordo 2×2 atau 3×3 tapi dipakai untuk matriks yang berordo lebih besar lagi
Determinandengan Ekspansi Kofaktor Pada Kolom Pertama. Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom. adj(A) = Determinan Matriks
Kaliini saya akan memberikan cara mencari determinan matriks 3x3 dengan Teorema Laplace reduksi menurut baris / kolom oke, bisa dilihat soal dibawah ini soal : * Hitung Determinan matriks diatas ! Jawaban : reduksi menurut kolom 1 = a11.k11 - a21.k21 + a31.k31 = 0
tO0jo. 290 152 328 154 387 462 396 27 447
menentukan determinan matriks dengan ekspansi kofaktor