Postinganini sudah pastilah ngebahas soal dan pembahasan SIMAK UI. Dan postingan ini untuk melengkapi Catatan Matematika b4ngrp, tentu di dibarengi harapan kiranya juga bermanfaat buat adik-adik sekalian yang kepengen kali masuk UI. kembali dan tidak bosan-bosannya saya mengingatkan bahwa belajar itu HARUS, sebab belajar adalah salah satu usaha nyata menuju keberhasilan.
50% found this document useful 2 votes1K views4 pagesDescriptionSoal SIMAK UI 2018 Matematika Dasar Lihat Soal dan Pembahasan Matematika Terlengkap di Web FB Youtube TitleSoal SIMAK UI 2018 Matematika Dasar ยฉ All Rights ReservedAvailable FormatsPDF, TXT or read online from ScribdShare this documentDid you find this document useful?50% found this document useful 2 votes1K views4 pagesSoal SIMAK UI 2018 Matematika DasarOriginal TitleSoal SIMAK UI 2018 Matematika Dasar SIMAK UI 2018 Matematika Dasar Lihat Soal dan Pembahasan Matematika Terlengkap di Web FB Youtube httโ€ฆFull descriptionJump to Page You are on page 1of 4 SOAL MATEMATIKA DASAR SIMAK UI 2018 Kode 638 Retyped by Reikson Panjaitan, 33 21 x x ๎€‚๎€€ 2 3 6 2 log 3 log log 4 x y x y ๎€€ ๎€‚ ๎€€ ๎€‚ ๎€ 1 22 y x ๎€ p q 2 4 0 x x ๎€€ ๎€ ๎€‚ 2 2 5 4 p q p ๎€€ ๎€€ 394 ๎€ 73 ๎€€ 394 14 ๎€€ 154 2 4 3 x x ๎€ ๎€„ ๎€ ๎€€ 2 x R x ๎€‡ ๎€„ ๎€ 132 }6 x ๎€„ ๎€„ ๎€€ 2 x R x ๎€‡ ๎€„ ๎€ 2 } x ๎€„ 13 26 x R x ๎€Ž ๎€—๎€‡ ๎€ ๎€„ ๎€„๎€ ๎€˜๎€ ๎€™ 136 x R x ๎€Ž ๎€—๎€‡ ๎€„๎€ ๎€˜๎€ ๎€™ 1326 x R x ๎€Ž ๎€—๎€‡ ๎€„ ๎€„๎€ ๎€˜๎€ ๎€™ 12 12 52 92 32 72 11 4 x A ๎€‹ ๎€”๎€‚ ๎€Œ ๎€•๎€ ๎€– x ๎€€ ๎€ 1 1det det 33 A A ๎€ ๎€ˆ ๎€‘๎€ ๎€‚๎€‰ ๎€’๎€Š ๎€“ 1,1 ๎€ 4,1 1, 5 ๎€ ๎€ 4, 5 ๎€ 352 y x ๎€‚ ๎€ 15 35 34 25 14 f 1 y x ๎€‚ ๎€ ๎€€ 1 x ๎€ ๎€€ 1 3 f ๎€ƒ ๎€‚ 4 f 1213 1193 1173 1203 1183 1 1 2 1 g x x ๎€ ๎€€ ๎€‚ ๎€ ๎€€ ๎€ 11 2 1 4 2 g f x x ๎€๎€ ๎€… ๎€€ ๎€‚ ๎€ 2 f 4 f x x ๎€‚ ๎€ 2 g x x ๎€‚ f ๎€€ ๎€ 0 x R x ๎€‡ ๎€† g ๎€€ ๎€ 0 x R x ๎€‡ ๎€† f g ๎€€ ๎€ 2 2 x R x ๎€‡ ๎€ ๎€„ ๎€„ g f ๎€€ ๎€ 4 x R x ๎€‡ ๎€† Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime. ๏ปฟPembahasanTurunan Simak UI 2018 Matematika Dasar kode 632 - dunia informa Soal yang Akan Dibahas Gunakan petunjuk C. Jika f ( x) = 1 x 2 + 4 , maka (1). f โ€ฒ ( 0) tidak ada (2). f โ€ฒ ( โˆ’ 1) = 1 25 (3). fungsi naik untuk x > 0 (4). y = โˆ’ 2 25 x + 7 25 adalah persamaan garis singgung di x = 1 โ™  Konsep Dasar *). Turunan fungsi aljabar : Pembahasan SIMAK UI Matematika Dasar 2018 Soal 1 Hasil Perkalian semua bilangan yang memenuhi $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$ adalah โ€ฆ. Jawaban Pertama, kita misalkan $\sqrt[3]{x}=a$, sehingga persamaan dalam soal bisa kita tulis menjadi $a=\frac{2}{1+a}$ Kemudian kedua ruas ruas kanan dan kiri kita kalikan dengan faktor penyebutnya, sehingga $a1+a=2$ $a+a^2=2$ $a+a^2-2=0$ Ini kita faktorkan, sehingga kita mendapatkan nilai a. $a-1a+2=0$ $a=1$ atau $a=-2$ Setelah kita mendapatkan nilai a kemudian kita kembali ke bentuk yang kita misalkan tadi. Sehingga nilainya menjadi Untuk $a=1$, $\sqrt[3]{x}=a$ $\sqrt[3]{x}=1$ $x^{\frac{1}{3}}=1$ kedua ruas kita pangkatkan dengan tiga agar x disebelah kiri pangkatnya 1, sehingga $x=1^{3}$ $x=1$ Untuk $a=-2$ $\sqrt[3]{x}=a$ $\sqrt[3]{x}=-2$ $x^{\frac{1}{3}}=-2$ kedua ruas dipangkatkan tiga. $x^{\frac{1}{3}}^{3}=-2^{3}$ $x=-8$ Dari sini terlihat bahwa penyelesaian yang kita dapatkan ada dua, yaitu 1 dan -8. Karena pertanyaan soalnya adalah hasil perkalian penyelesaian persamaan, maka jawaban dari soal di atas adalah 1 . -8 = -8. Soal 2 Jika $^{7}\log ^{3}\log^2\log x =0$, nilai $2x+^4\log x^2$ adalah โ€ฆ. Jawaban $^{7}\log ^{3}\log^2\log x =0$ nilai diruas kanan kemudian kita ubah ke dalam bentuk logaritma basis 7, sehingga bentuk soalnya menjadi $^{7}\log ^{3}\log^2\log x =^{7}\log 7^{0}$ $^{7}\log ^{3}\log^2\log x =^{7}\log 1$ Kemudian nilai $^{7}\log$ ini kita hilangkan atau sama-sama dicoret sehingga bentuk persamaannya menjadi $ ^{3}\log^2\log x =1$ Sebelah kanan kembali kita ubah menjadi bentuk logaritma basis 3, sehingga $ ^{3}\log^2\log x =^{3}\log 3^1$ $ ^{3}\log^2\log x =^{3}\log 3$ Bentuk $^{3}\log$ kita sederhanakan sehingga yang tertinggal adalah sebagai berikut $^2\log x=3$ Karena bentuknya sudah sederhana, maka bentuk logaritma di atas langsung saja kita ubah ke bentuk pangkat, yaitu $x=2^3=8$ Pertanyaan soalnya adalah nilai dari $2x+^4\log x^2$ maka kita tinggal mengganti nilai x dengan nilai 8, sehingga $2x+^4\log x^2= 8^2$ $2x+^4\log x^2=16+^4\log 64$ $2x+^4\log x^2=16+3=19$ Jadi, jawaban dari soal di atas adalah 19. Pembahasankali ini kita beri judul "Pembahasan Matematika Dasar SIMAK UI 2011 Kode 318".Mungkin untuk beberapa teman pembahasan ini sudah tidak HOTS. Namun bagi saya, karena tujuan pertama dan utama kehadiran blog ini sebagai wadah buat saya menyimpan catatan-catatan penting tentang matematika maka saya posting aja. Selamat datang kembali.. bersama saya di Kali ini yang akan saya bagi adalah Soal dan Pembahasan Matematika Dasar SIMAK UI 2018 Kode 638. Soalnya saya peroleh dari teman saya guru yang baik yaitu Bapak Insan Abdul Syukur dan saya sangat berterima kasih kepada beliau yang bersedia menyedekahkan paket datanya untuk mengirimkan foto soal ini. Sahabat-sahabatku mari kita belajar bersama, jika ada solusi atau pembahasan yang kurang tepat saya berharap kritik dan koreksinya di kolom komentar atau silahkan japri saya melalui Telegram. Matematika Dasar SIMAK UI 2018 No. 1 Hasil perkalian semua solusi bilangan real yang memenuhi $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$ adalah โ€ฆ A. -8 B. -6 C. 4 D. 6 E. 8 Pembahasan $\sqrt[3]{x}=\frac{2}{1+\sqrt[3]{x}}$, misal $y=\sqrt[3]{x}$, maka $y=\frac{2}{1+y}$ ${{y}^{2}}+y=2$ ${{y}^{2}}+y-2=0$ $y+2y-1=0$ $y=-2$ atau $y=1$ $\sqrt[3]{x}=-2\Leftrightarrow {{x}_{1}}=-8$ $\sqrt[3]{x}=1\Leftrightarrow {{x}_{2}}=1$ ${{x}_{1}}.{{x}_{2}}= Kunci A Matematika Dasar SIMAK UI 2018 No. 2 Jika $2+{}^{2}\log x=3+{}^{3}\log y={}^{6}\log x-4y$, nilai $\frac{1}{2y}-\frac{2}{x}$ adalah โ€ฆ A. 36 B. 54 C. 81 D. 108 E. 216 Pembahasan $2+{}^{2}\log x=a$ ${}^{2}\log x=a-2\Leftrightarrow x={{2}^{a-2}}$ $3+{}^{3}\log y=a$ ${}^{3}\log y=a-3\Leftrightarrow y={{3}^{a-3}}$ ${}^{6}\log x-4y=a\Leftrightarrow x-4y={{6}^{a}}$ $\frac{1}{2y}-\frac{2}{x}=\frac{x-4y}{2xy}$ $=\frac{{{6}^{a}}}{{{ $=\frac{{{6}^{a}}}{2.\frac{{{2}^{a}}}{{{2}^{2}}}.\frac{{{3}^{a}}}{{{3}^{3}}}}$ $=\frac{{{6}^{a}}}{\frac{{{6}^{a}}}{54}}$ = 54 Kunci B Matematika Dasar SIMAK UI 2018 No. 3 Jika $p$ dan $q$ adalah akar-akar persamaan ${{x}^{2}}+x-4=0$, nilai $5{{p}^{2}}+4{{q}^{2}}+p$ adalah โ€ฆ A. 20 B. 28 C. 32 D. 40 E. 44 Pembahasan ${{x}^{2}}+x-4=0$, akar-akar $p$ dan $q$, maka $p+q=\frac{-b}{a}=-1$, dan $ Untuk $x=p$, maka ${{x}^{2}}+x-4=0$ menjadi ${{p}^{2}}+p-4=0\Leftrightarrow {{p}^{2}}+p=4$ $5{{p}^{2}}+4{{q}^{2}}+p=4{{p}^{2}}+4{{q}^{2}}+{{p}^{2}}+p$ $=4{{p}^{2}}+{{q}^{2}}+{{p}^{2}}+p$ $=4\left[ {{p+q}^{2}}-2pq \right]+4$ $=4\left[ {{-1}^{2}}-2.-4 \right]+4$ = 40 Kunci D Matematika Dasar SIMAK UI 2018 No. 4 Jika a โ€“ 3 = -b โ€“ 4 = -c โ€“ 5 = d + 6 = e + 7 = a โ€“ b โ€“ c + d + e + 8, maka a โ€“ b โ€“ c + d + e = โ€ฆ A. $-\frac{39}{4}$ B. $-\frac{1}{4}$ C. $-\frac{7}{3}$ D. $\frac{15}{4}$ E. $\frac{39}{4}$ Pembahasan $a-3$=$-b-4$=$-c-5$=$d+6$=$e+7$=$a-b-c+d+e+8$ kurangkan dengan 8, maka diperoleh $a-11$=$-b-12$=$-c-13$=$d-2$=$e-1$=$a-b-c+d+e$=$x$ Misal $a-b-c+d+e=x$ $a-11=x$ ... pers 1 $-b-12=x$ โ€ฆ pers 2 $-c-13=x$ โ€ฆ pers 3 $d-2=x$ โ€ฆ pers 4 $e-1=x$ โ€ฆ pers 5 Jumlahkan seluruh persamaan, maka diperoleh $a-11$ + $-b-12$ + $-c-13$ + $d-2$ + $e-1$=$5x$ $a-b-c+d+e-39=5x$ $x-39=5x$ $-4x=39$ $x=-\frac{39}{4}$ $a-b-c+d+e=-\frac{39}{4}$ Kunci A Matematika Dasar SIMAK UI 2018 No. 5 Himpunan penyelesaian dari pertidaksamaan $\sqrt{{{x}^{2}}-4}\le 3-x$ adalah โ€ฆ A. $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\le \frac{13}{6}\}$ B. $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\}$ C. $\left\{ x\in R-2\le x\le \frac{13}{6} \right\}$ D. $\left\{ x\in Rx\le \frac{13}{6} \right\}$ E. $\left\{ x\in R2\le x\le \frac{13}{6} \right\}$ Pembahasan i Syarat $\sqrt{{{x}^{2}}-4}\le 3-x$ ${{x}^{2}}-4\ge 0$ $x+2x-2\ge 0$ $x=-2$ atau $x=2$ $x\le -2$ atau $x\ge 2$ ii Solusi $\sqrt{{{x}^{2}}-4}\le 3-x$, menentukan x pembuat nol. ${{x}^{2}}-4={{\left 3-x \right}^{2}}$ ${{x}^{2}}-4=9-6x+{{x}^{2}}$ $6x=13\Leftrightarrow x=\frac{13}{6}$ Yang memenuhi $\sqrt{{{x}^{2}}-4}\le 3-x$ adalah $x\le \frac{13}{6}$ Dari i dan ii diperoleh himpunan penyelesaiannya adalah $\left\{ x\in Rx\le -2 \right.$ atau $2\le x\le \frac{13}{6}\}$. Kunci A Matematika Dasar SIMAK UI 2018 No. 6 Sebuah barisan geometri terdiri dari 3 suku mempunyai suku pertama $\frac{1}{2}$. Jika suku kedua ditambah 3 dan suku ketiga ditambah 4, maka barisan tersebut menjadi barisan aritmetika. Suku kedua terbesar yang mungkin dari barisan aritmetika tersebut adalah โ€ฆ A. $\frac{1}{2}$ B. $\frac{3}{2}$ C. $\frac{5}{2}$ D. $\frac{7}{2}$ E. $\frac{9}{2}$ Pembahasan Barisan Geometri ${{U}_{n}}=a{{r}^{n-1}}$; $a=\frac{1}{2}$, maka ketiga suku tersebut adalah $\frac{1}{2}$, $\frac{1}{2}r$, $\frac{1}{2}{{r}^{2}}$ Barisan aritmetika $\frac{1}{2}$, $\frac{1}{2}r+3$, $\frac{1}{2}{{r}^{2}}+4$ $2{{U}_{2}}={{U}_{1}}+{{U}_{3}}$ $2\left \frac{1}{2}r+3 \right=\frac{1}{2}+\left \frac{1}{2}{{r}^{2}}+4 \right$ $r+6=\frac{1}{2}+\frac{1}{2}{{r}^{2}}+4$ $2r+12=1+{{r}^{2}}+8$ ${{r}^{2}}-2r-3=0$ $r-3r+1=0$ $r=3$ atau $r=-1$ Agar suku kedua barisan aritmetika $\frac{1}{2}r+3$ terbesar maka $r=3$, diperoleh ${{U}_{2}}=\frac{1}{2}r+3\Leftrightarrow {{U}_{2}}=\frac{1}{2}.3+3=\frac{9}{2}$ Kunci E Matematika Dasar SIMAK UI 2018 No. 7 Jika $A=\left[ \begin{matrix} 1 & x \\ 1 & 4 \\ \end{matrix} \right]$ adalah matriks yang mempunyai invers, rata-rata dari nilai-nilai $x$ yang memenuhi $\det \left -\frac{1}{3}A \right=\det \left 3{{A}^{-1}} \right$ adalah โ€ฆ A. 1 B. 4 C. 5 D. 8 E. 10 Pembahasan $A=\left[ \begin{matrix} 1 & x \\ 1 & 4 \\ \end{matrix} \right] \Rightarrow A=4-x$ $\det \left -\frac{1}{3}A \right=\det \left 3{{A}^{-1}} \right$ ${{\left -\frac{1}{3} \right}^{2}}A={{3}^{2}}.\frac{1}{A}$ $\frac{4-x}{9}=\frac{9}{4-x}$ $16-8x+{{x}^{2}}=81$ ${{x}^{2}}-8x-65=0$ $x-13x+5=0$ ${{x}_{1}}=13$ atau ${{x}_{2}}=-5$ Maka $\frac{{{x}_{1}}.{{x}_{2}}}{2}=\frac{13+-5}{2}=4$ Kunci B Matematika Dasar SIMAK UI 2018 No. 8 Daerah R persegipanjang yang memiliki titik sudut $-1,1$, $4,1$, $-1,-5$, dan $4,-5$. Suatu titik akan dipilih dari R. Probabilitas akan terpilih titik yang berada di atas garis $y=\frac{3}{2}x-5$ adalah โ€ฆ A. $\frac{1}{5}$ B. $\frac{2}{5}$ C. $\frac{3}{5}$ D. $\frac{1}{4}$ E. $\frac{3}{4}$ Pembahasan Perhatikan ilustrasi berikut Titik-titik yang berada di atas $y=\frac{3}{2}x-5$ adalah luas ABED AB = 5 satuan, BC = 6 satuan, maka Luas ABCD = 5 x 6 = 30 Luas BCE = $\frac{1}{2}.EC\times BC=\frac{1}{2}\times 4\times 6=12$ Luas ABED = Luas ABCD โ€“ Luas BCE = 18 Probabilitas akan terpilih titik yang berada di atas garis $y=\frac{3}{2}x-5$ adalah $=\frac{[ABED]}{[ABCD]}=\frac{18}{30}=\frac{3}{5}$ Kunci C Matematika Dasar SIMAK UI 2018 No. 9 Diketahui $f$ adalah fungsi kuadrat yang mempunyai garis singgung $y=-x+1$ di titik $x=-1$. Jika $f'1=3$ maka $f4$ = โ€ฆ. A. 11 B. 12 C. 14 D. 17 E. 22 Pembahasan Misal $fx=a{{x}^{2}}+bx+c$ $f'x=2ax+b$, gradien garis singgung di titik $x=-1$ adalah $m=f'1$ $m=-2a+b$, sama dengan gradien $y=-x+1$, maka $-2a+b=-1$ โ€ฆ pers 1 $f'1=3\Leftrightarrow 2a+b=3$โ€ฆ 2 $-2a+b=-1$ $2a+b=3$ - - $-4a=-4\Leftrightarrow a=1,b=1$ $fx=a{{x}^{2}}+bx+c$ $y={{x}^{2}}+x+c$ garis singgung $y=-x+1$ di titik $x=-1$, maka $y=2$ $2={{-1}^{2}}-1+c\Leftrightarrow c=2$ $fx={{x}^{2}}+x+2\Leftrightarrow f4={{4}^{2}}+4+2=22$ Kunci E Matematika Dasar SIMAK UI 2018 No. 10 Misalkan dalam sebuah kotak terdapat 10 bola yang terdiri dari bola warna merah dan biru, kemudian diambil 2 secara bersamaan. Jika banyak cara mengambil bola merah dan biru adalah 9, selisih banyaknya bola merah dan biru adalah โ€ฆ A. 4 B. 5 C. 6 D. 7 E. 8 Pembahasan Banyak bola merah = m Banyak bola biru = b Maka m + b = 10 โ€ฆ persamaan 1 Banyak cara mengambil 1 merah dan 1 biru adalah $C_{1}^{m}\times C_{1}^{b}=9\Leftrightarrow m\times b=9$ โ€ฆ persamaan 2 Dari persamaan 1 dan 2 maka diperoleh $m=9,b=1$ atau $m=1,b=9$. Jadi selisihnya = 9-1 = 8 Kunci E Matematika Dasar SIMAK UI 2018 No. 11 Diberikan sebuah segitiga siku-siku ABC yang siku-siku di B dengan AB = 6 dan BC = 8. Titik M, N berturut-turut berada pada sisi AC sehingga AM MN NC = 1 2 3. Titik P dan Q secara berurutan berada pada sisi AB dan BC sehingga AP tegak lurus PM dan BQ tegak lurus QN. Luas segilima PMNQB adalah โ€ฆ A. $21\frac{1}{3}$ B. $20\frac{1}{3}$ C. $19\frac{1}{3}$ D. $18\frac{1}{3}$ E. $17\frac{1}{3}$ Pembahasan Perhatikan gambar berikut! $AB=6,BC=8$, maka luas ABC = 24 Misal $AM=a\Rightarrow MN=2a,NC=3a$, maka $\Delta APM\approx \Delta NQC\approx \Delta ABC$, dengan perbandingan luas segitiga yang sebangun kita peroleh $[APM][ABC]=A{{M}^{2}}A{{C}^{2}}$ $\frac{[APM]}{[ABC]}=\frac{{{a}^{2}}}{{{6a}^{2}}}$ $[APM]=\frac{1}{36}\times [ABC]$ $[APM]=\frac{1}{36}\times 24=\frac{2}{3}$ $[NQC][ABC]=N{{C}^{2}}A{{C}^{2}}$ $\frac{[NQC]}{[ABC]}=\frac{{{3a}^{2}}}{{{6a}^{2}}}$ $[NQC]=\frac{1}{4}\times [ABC]$ $[NQC]=\frac{1}{4}\times 24=6$ $[PMNQB]=[ABC]-[APM]-[NQC]$ $[PMNQB]=24-\frac{2}{3}-6=17\frac{1}{3}$ Kunci E Matematika Dasar SIMAK UI 2018 No. 12 Jika ${{g}^{-1}}x+1=2x-1$ dan ${{\left g\circ {{f}^{-1}} \right}^{-1}}x+1=4{{x}^{2}}-2$, nilai $f2$ adalah โ€ฆ A. 5 B. 7 C. 8 D. 11 E. 13 Pembahasan ${{\left g\circ {{f}^{-1}} \right}^{-1}}x+1=4{{x}^{2}}-2$ $\left f\circ {{g}^{-1}} \rightx+1=4{{x}^{2}}-2$ $f\left {{g}^{-1}}x+1 \right=4{{x}^{2}}-2$ $f\left 2x-1 \right=4{{x}^{2}}-2$ Ambil nilai $x=\frac{3}{2}$, maka $f\left 2x-1 \right=4{{x}^{2}}-2$ $f\left 2.\frac{3}{2}-1 \right=4.{{\left \frac{3}{2} \right}^{2}}-2$ $f2=7$ Kunci B Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Matematika Dasar SIMAK UI 2018 No. 13 Jika $fx=\sqrt{x-4}$ dan $gx={{x}^{2}}$, maka โ€ฆ 1 daerah asal fungsi $f$ adalah $\left\{ x\in Rx\ge 0 \right\}$ 2 derah asal fungsi $g$ adalah $\left\{ x\in Rx\ge 0 \right\}$ 3 daerah asal fungsi $f\circ g$ adalah $\left\{ x\in R-2\le x\le 2 \right\}$ 4 daerah asal fungsi $g\circ f$ adalah $\left\{ x\in Rx\ge 4 \right\}$ Pembahasan Pernyataan 1 SALAH, sebab daerah asal fungsi $f$ adalah $\left\{ x\in Rx\ge 4 \right\}$, karena pernyataan 1 salah maka opsi yang mungkin adalah C dan D, selanjutnya kita cek pernyataan 2. Pernyataan 2 SALAH, sebab daerah asal fungsi $g$ adalah $\left\{ x\in R \right\}$, maka opsi yang kita pilih adalah D. Kunci D Matematika Dasar SIMAK UI 2018 No. 14 Jika $fx={{x-1}^{\frac{2}{3}}}$, maka โ€ฆ 1 $f$ terdefinisi di $x\ge 0$ 2 $f'2=\frac{2}{3}$ 3 $y=\frac{2}{3}x-\frac{1}{3}$ adalah garis singgung di $x=2$ 4 $f$ selalu mempunyai turunan di setiap titik. Pembahasan Pernyataan 1 BENAR $fx={{x-1}^{\frac{2}{3}}}$ $f'x=\frac{2}{3}{{x-1}^{\frac{2}{3}-1}}$ $f'x=\frac{2}{3\sqrt[3]{x-1}}$ $m=f'2=\frac{2}{3\sqrt[3]{2-1}}=\frac{2}{3}$ , maka 2 BENAR ${{x}_{1}}=2\Rightarrow f2={{2-1}^{\frac{2}{3}}}\Rightarrow {{y}_{1}}=1$ Persamaan garis singgung kurva di 2, 1 adalah $y-1=\frac{2}{3}x-2$ $y=\frac{2}{3}x-\frac{4}{3}+1\Leftrightarrow y=\frac{2}{3}x-\frac{1}{3}$, maka 3 BENAR $f'x=\frac{2}{3\sqrt[3]{x-1}}$ selalu mempunyai turunan di setiap titik, maka 4 SALAH, sebab untuk $x = 1$ tidak terdefinisi f'x. Kunci A 1, 2, dan 3 benar. Matematika Dasar SIMAK UI 2018 No. 15 Rata-rata dari tiga buah bilangan adalah 6 lebihnya dibandingkan dengan bilangan terkecil dan 12 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 6, maka โ€ฆ 1 jangkauannya adalah 18 2 simpangan rata-ratanya adalah 8. 3 variansinya adalah 108 4 modusnya adalah 6Pembahasan Misal a, b, dan c ketiga bilangan itu, dengan $a < b < c$ mediannya $b=6$ maka $\frac{a+b+c}{3}=a+6$ $-2a+b+c=18$ $-2a+6+c=18$ $-2a+c=12$ โ€ฆ persamaan 1 $\frac{a+b+c}{3}=c-12$ $a+b-2c=-36$ $a+6-2c=-36$ $a-2c=-42$ โ€ฆ persamaan 2 Dengan metode eliminasi dari persamaan 1 dan 2 $\left. \begin{align} & -2a+c=12 \\ & a-2c=-42 \\ \end{align} \right\begin{matrix} \times 2 \\ \times 1 \\ \end{matrix}$ $-4a+2c=24$ $a-2c=-42$ - + $-3a=-18\Rightarrow a=6$ $a=6$ substitusi ke persamaan 1, maka $-2a+c=12\Leftrightarrow c=24$, Ketiga bilangan itu adalah 6, 6, 24, $\bar{x}=12$ Jangkauan = 24 โ€“ 6 = 18 โ€ฆ. 1 BENAR $SR=\frac{6-12+6-12+24-12}{3}$ $SR=\frac{6+6+12}{3}=8$ โ€ฆ 2 BENAR Varians $\sigma $ $\sigma =\frac{{{6-12}^{2}}+{{6-12}^{2}}+{{24-12}^{2}}}{3}$ $\sigma =\frac{36+36+144}{3}=72$ โ€ฆ 3 SALAH Modus = 6 โ€ฆ 4 BENAR Kunci C Baca Juga Soal dan Pembahasan Matematika IPA SIMAK UI 2018. Soal dan Pembahasan Matematika Dasar SIMAK UI 2017. Soal dan Pembahasan Matematika IPA SIMAK UI 2017. Soal dan Pembahasan Matematika Dasar SIMAK UI 2016. Soal dan Pembahasan Matematika Dasar SIMAK UI 2015. Subscribe and Follow Our Channel Alhamdulillah pada kesempatan kali ini blog berbagi dan belajar kembali akan membagikan pembahasan soal Matematika Dasar pada SIMAK UI (Seleksi Masuk Universitas Indonesia) tahun 2018 untuk kode soal 641. Pembahasan kali ini selain disusun urut dan terinci agar mudah dipahami juga disertai dengan TRIK SUPERKILAT yang mampu mengoptimalkan waktu
Nomor 1 Hasil perkalian semua solusi bilangan real yang memenuhi $ \sqrt[3]{x} = \frac{2}{1 + \sqrt[3]{x}} $ adalah ... A. $ -8 \, $ B. $ -6 \, $ C. $ 4 \, $ D. $ 6 \, $ E. $ 8 $ Nomor 2 Jika $ 2 + {}^2 \log x = 3 + {}^3 \log y = {}^6 \log x-y $ , maka nilai $ \frac{1}{y} - \frac{1}{x} $ adalah .... A. $ 36 \, $ B. $ 54 \, $ C. $ 81 \, $ D. $ 108 \, $ E. $ 216 \, $ Nomor 3 Misalkan $ p $ dan $ q $ adalah bilangan-bilangan real tidak nol dan persamaan kuadrat $ x^2 + px + q = 0 $ mempunyai solusi $ p $ dan $ q $ , maka $ p^2 - 2q = ... $ A. $ 2 \, $ B. $ 3 \, $ C. $ 4 \, $ D. $ 5 \, $ E. $ 8 $ Nomor 4 Jika $ a - 3 = -b - 4 = -c - 5 = d + 6 = $ $ e + 7 = a-b-c+d+e+8 $ , maka $ a-b-c+d+e = .... $ A. $ -\frac{39}{4} \, $ B. $ -\frac{1}{4} \, $ C. $ -\frac{7}{3} \, $ D. $ \frac{15}{4} \, $ E. $ \frac{39}{4} \, $ Nomor 5 Himpunan penyelesaian dari pertidaksamaan $ \sqrt{x^2 - 4} \leq 3 - x $ adalah ... A. $ \{ x \in R x \leq -2 \text{ atau } 2 \leq x \leq \frac{13}{6} \} \, $ B. $ \{ x \in R x \leq -2 \text{ atau } 2 \leq x \} \, $ C. $ \{ x \in R -2 \leq x \leq \frac{13}{6} \} \, $ D. $ \{ x \in R x \leq \frac{13}{6} \} \, $ E. $ \{ x \in R 2 \leq x \leq \frac{13}{6} \} \, $ Nomor 6 Barisan tiga bilangan real membentuk barisan aritmetika dengan suku awal 9. Jika 2 ditambahkan pada suku ke-2 dan 20 ditambahkan ke suku ke-3, tiga bilangan real tersebut membentuk barisan geometri. Nilai yang mungkin untuk suku ke-3 barisan geometri tersebut adalah .... A. $ 1 \, $ B. $ 6 \, $ C. $ 21 \, $ D. $ 29 \, $ E. $ 36 $ Nomor 7 Jika $ A = \left[ \begin{matrix} -1 & -1 & x \\ 2 & y & z \end{matrix} \right] $ , $ B = \left[ \begin{matrix} 1 & 0 \\ 1 & -2 \\ -1 & 1 \end{matrix} \right] $ , dan determinan matriks $ AB $ adalah $ 0 $ , maka nilai $ 2xy - x - y $ adalah .... A. $ -8 \, $ B. $ -2 \, $ C. $ 2 \, $ D. $ 6 \, $ E. $ 12 $ Nomor 8 Daerah R persegi panjang yang memiliki titik sudut $ -1,1 $ , $ 4,1 $ , $ -1,-5 $ dan $ 4,-5 $. Suatu titik akan dipilih dari R. Probabilitas akan terpilih titik yang berada di atas garis $ y = \frac{3}{2}x - 5 $ adalah ... A. $ \frac{1}{5} \, $ B. $ \frac{2}{5} \, $ C. $ \frac{3}{5} \, $ D. $ \frac{1}{4} \, $ E. $ \frac{3}{4} $ Nomor 9 Diketahui $ f $ adalah fungsi kuadrat yang mempunyai garis singgung $ y = -x+1 $ di titik $ x = -1 $. Jika $ f^\prime 1 = 3 $ , maka $ f4 = ... $ A. $ 11 \, $ B. $ 12 \, $ C. $ 14 \, $ D. $ 17 \, $ E. $ 22 $ Nomor 10 Banyak cara memilih 3 pasang pemain untuk bermain dalam permainan ganda dari 10 pemain yang ada adalah .... A. $ 1250 \, $ B. $ 2130 \, $ C. $ 3150 \, $ D. $ 3500 \, $ E. $ 9450 $ Nomor 11 Diketahui segitiga siku-siku AED dan BFC dibuat di dalam persegi panjang ABCD sehingga F terletak pada DE seperti tampak pada gambar. Jika $ AE = 7 $ , $ ED = 24 $ , dan $ BF = 15 $ , maka panjang AB adalah .... A. $ \frac{62}{3} \, $ B. $ 20 \, $ C. $ \frac{50}{3} \, $ D. $ 16 \, $ E. $ \frac{44}{3} $ Nomor 12 Jika $ f \left \frac{x}{3} \right = x^2 + x + 1 $ , maka jumlah kuadrat nilai-nilai $ y $ yang memenuhi $ f3y = 5 $ adalah .... A. $ \frac{1}{2} \, $ B. $ \frac{1}{3} \, $ C. $ \frac{1}{4} \, $ D. $ \frac{1}{7} \, $ E. $ \frac{1}{9} $ Nomor 13 Gunakan petunjuk C. Jika $ fx+1 = \frac{2x-7}{x+1} $ , maka .... 1. $ f-1 = 11 $ 2. $ f^{-1} -1 = 3 $ 3. $ f \circ f ^{-1} -1 = -9 $ 4. $ \frac{1}{f^{-1}-2} = \frac{4}{9} $ Nomor 14 Gunakan petunjuk C. Jika $ fx = \frac{ax+b}{x^2 + 1} $ , $ f0 = f^\prime 0 $ , dan $ f^\prime -1 = 1 $ , maka .... 1. $ a + b = 4 $ 2. $ f1 = 2 $ 3. $ f-2 = -\frac{2}{5} $ 4. $ y = x + 1 \, $ adalah persamaan garis singgung di $ x = -1 $ Nomor 15 Gunakan petunjuk C. Rata-rata tiga bilangan adalah 8 lebihnya dibandingkan dengan bilangan terkecil dan 14 kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah 10, maka ... 1. jangkauannya adalah 22 2. variansinya adalah 124 3. jumlahnya adalah 48 4. simpangan rata-ratanya adalah 8
Nomor15: Soal dan Pembahasan SIMAK UI 2019 Matematika Dasar (Matdas) Diketahui adalah bilangan bulat positif dengan dan . Jika rata-rata kelima bilangan tersebut adalah , maka. 1. jangkauan antarkuartilnya adalah 2. kuartil pertamanya adalah 3. jangkauannya adalah 4. mediannya mempunyai 2 faktor prima

Lessons10 lessons โ€ข 1h 54m Pembahasan SIMAK UI 2018 Matematika Dasar Part 1 Menyelesaikan Bentuk Akar dan Persamaan Linear10m 31sPembahasan SIMAK UI 2018 Matematika Dasar Part 2 Persamaan Logaritma11m 02sPembahasan SIMAK UI 2018 Matematika Dasar Part 3 Persamaan kuadrat dan pertidaksamaan kuadrat10m 35sPembahasan SIMAK UI 2018 Matematika Dasar Part 4 Barisan dan Peluang11m 35sPembahasan SIMAK UI 2018 Matematika Dasar Part 5 Matriks10m 54sPembahasan SIMAK UI 2018 Matematika Dasar Part 6 Garis singgung kurva & Aturan Kombinasi12m 34sPembahasan SIMAK UI 2018 Matematika Dasar PART 7 Kesebangunan & Invers Fungsi Komposisi11m 11sPembahasan SIMAK UI 2018 Matematika Dasar PART 8 Fungsi dan Statistika13m 32sPembahasan SIMAK UI 2018 Matematika Dasar PART 9 Matriks & Akar-akar Persamaan Kuadrat10m 14sPembahasan SIMAK UI 2018 Matematika Dasar PART 10 Fungsi Invers & Persamaan Logaritma12m 17s

Berikutkami paparkan soal dan pembahasan SIMAK UI tahun 2018. Semoga artikel ini bisa membantu kalian dalam pemahaman materi sebelum melakukan ujian dalam waktu dekat ini. Download Soal & Pembahasan SIMAK UI 2018 Tanpa basa-basi lebih lama lagi, berikut kami paparkan soal dan pembahasan SIMAK UI tahun 2018 : 1. Kemampuan Dasar (KD) ๏ปฟSiapa nih yang lagi ngambis buat masuk UI? Nah, buat Sobat Zenius, gue mau ngajak elo untuk mengulas pembahasan soal SIMAK UI Matematika nih. Yuk, baca artikel ini sampai selesai! Nggak bisa dipungkiri kalau materi matematika dasar SIMAK UI & matematika IPA, menjadi materi yang paling diantisipasi oleh sebagian besar peserta SIMAK UI. Elo berasa harus latihan ekstra untuk materi yang satu ini. Selain materi matematika dasar SIMAK UI dan matematika IPA, elo tau gak sih, materi apa aja yang diujikan di SIMAK UI? Kalau belum tau, tenang aja gue bakalan ngasih sedikit info mengenai materi apa saja yang harus dipelajari, di antaranya Kemampuan Dasar KD Matematika Dasar, Bahasa Indonesia, dan Bahasa InggrisKemampuan IPA KA Matematika IPA, Fisika, Kimia, BiologiKemampuan IPS KS Ekonomi, Sejarah, Geografi, Sosiologi โ€œAduhโ€ฆ kok ada matematika, sih?โ€ Tenang-tenang, walau nanti elo bakalan menjawab soal-soal Matematika dasar dan bagi yang mengambil jurusan SAINTEK juga akan jawab soal-soal Matematika IPA, elo gak perlu merasa khawatir. Kenapa? Karena di artikel kali ini, gue bakalan memberikan contoh soal dan pembahasan SIMAK UI Matematika. Jadi, simak terus ya artikel ini yang akan membahas kumpulan soal Matematika SIMAK UI. Materi soal SIMAK UI Arsip Zenius Materi Matematika Dasar SIMAK UI Contoh Soal dan Pembahasan SIMAK UI Matematika DasarMateri Matematika IPA SIMAK UI Contoh Soal dan Pembahasan SIMAK UI Matematika IPA Sebelum gue bahas contoh soal dan pembahasan SIMAK UI Matematika dasar, ada baiknya, elo tau materi apa saja yang perlu dipelajari nantinya. Jadi, ada beberapa materi Matematika dasar SIMAK UI yang perlu elo pelajari seperti logaritma, persamaan kuadrat, pertidaksamaan, barisan dan deret, turunan, dan peluang. Oleh karena itu, Sobat Zenius, perlu banget untuk menguasai konsep-konsep dari materi tersebut, ya! Perlu elo ketahui, materi-materi tersebut akan muncul dalam beberapa soal SIMAK UI Matematika, yang biasanya sih terdiri dari 15 soal. Jadi diharapkan elo benar-benar paham ya soalnya ini akan masuk sebagai soal kemampuan dasar SIMAK UI. Karena elo udah tahu apa saja materi yang biasanya muncul dalam soal-soal Matematika dasar, sekarang langsung saja disimak soal dan pembahasan SIMAK UI. Check it out! Gue saranin biar elo bisa belajar dimana aja dan kapan aja, langsung instal aja aplikasi Zenius di HP elo. Di situ elo bisa cek contoh-contoh soal dan pembahasan materi yang bikin elo auto ngerti. Buruan klik di bawah ini ya! Download Aplikasi Zenius Fokus UTBK untuk kejar kampus impian? Persiapin diri elo lewat pembahasan video materi, ribuan contoh soal, dan kumpulan try out di Zenius! Contoh Soal dan Pembahasan SIMAK UI Matematika Dasar Oke, pada bagian ini gue bakalan tulis 5 contoh soal dan pembahasan SIMAK UI Matematika dasar. Nah, contoh soal-soal ini tentunya gue ambil dari latihan-latihan soal di Zenius blog dan channel YouTube Zenius. Udah penasaran, nih? Yuk, coba bareng! Pembahasan Jawabannya adalah d. 200 Pembahasan Pembahasan Pembahasan Jawabannya adalah e. Tak terhingga Pembahasan Gimana nih, Sobat Zenius? Udah mulai dapat gambaran belum untuk soal dan pembahasan SIMAK UI, materi Matematika dasar? Kalau masih mau latihan soal lainnya, elo boleh banget akses Live Class Zenius di YouTube, GRATIS, dengan mengakses Zenius SIMAK UI. Okeโ€ฆ karena gue udah bahas mengenai contoh soal Matematika dasar, gue bakalan lanjut ke materi dan pembahasan contoh soal-soal Matematika IPA SIMAK UI. Apa aja, sih? Simak di bawah ini! Materi Matematika IPA SIMAK UI Untuk Matematika IPA, ada beberapa materi yang tercakup antara lain trigonometri, turunan, dimensi tiga, logaritma, limit, dan barisan dan deret. Jadi, untuk elo yang ambil jurusan SAINTEK, wajib belajar dan paham mengenai materi-materi ini. Sama seperti jumlah soal Matematika dasar SIMAK UI, elo juga akan jawab 15 soal Matematika IPA. Nah, untuk pemanasan dan persiapan elo nanti, di bawah ini merupakan kumpulan soal dan pembahasan SIMAK UI Matematika IPA. Check it out! Contoh Soal dan Pembahasan SIMAK UI Matematika IPA Setelah tahu apa saja materi dari Matematika IPA untuk SIMAK UI, gue bakalan lanjut bahas 5 contoh soal Matematika IPA SIMAK UI dan pembahasan. Perlu elo tahu nih, kalau contoh soal-soal ini tentunya gue ambil dari latihan-latihan soal dari blog Zenius SIMAK UI dan channel YouTube Zenius. Oke, kayaknya gue harus tantang elo, deh, jadi sebelum melihat pembahasannya, coba elo jawab sendiri soal yang gue tulis dan setelah itu elo bisa liat jawaban dan cara elo udah benar atau belum. Selamat mencoba! Pembahasan Pembahasan Pembahasan Oke, Sobat Zenius, jadi itu 5 contoh soal SIMAK UI Matematika IPA. Semoga bermanfaat, ya! Oh ya, kalau elo masih mau latihan soal mengenai Matematika IPA, silakan akses Live Class Zenius dengan klik di sini. Gue harap dari contoh soal SIMAK UI di atas elo sedikit ada gambaran apa yang harus elo hadapi nanti. Tapi tentunya elo udah ada persiapan dong ya untuk menyambut SIMAK UI ini. Tenang aja kalau belum ada persiapan, Zenius punya solusinya untuk elo. Penasaran kan program belajar apa untuk mengejar SIMAK UI Zenius. Gue kasih rekomendasi nih. Live Ultima Bootcamp dan Ultima Bootcamp UM cocok banget nih buat elo yang mau persiapan SIMAK UI. Di situ bakal ada materi dan juga Live Class yang bantu elo banget untuk menghadapi UTBK dan ujian mandiri. Buat elo yang mau mulai persiapan ujian masuk PTN mulai dari sekarang, elo bisa klik banner di bawah ini ya! Yuk, langganan Zenius sekarang! Wahhโ€ฆ gak kerasa nih, elo udah liat kumpulan contoh soal dan pembahasan SIMAK UI Matematika dasar dan Matematika IPA. Kira-kira udah kebayang belom, gimana nanti elo harus jawab soal-soal Matematika SIMAK UI waktu ujian berlangsung? Semoga lancar deh! Inget persiapan dari sekarang, biar nanti waktu ujian langsung sat set sat set kelarโ€ฆ Elo juga bisa akses soal SIMAK UI Matematika dan pelajaran lainnya langsung di web resmi SIMAK UI. Semangat kelas 12! Baca Juga Panduan SIMAK UI Info Pendaftaran SIMAK UI Strategi dan Tips Lolos SIMAK UI Originally published December 1, 2021 Updated by Ni Kadek Namiani Tiara Putri โ€“ SEO Writer Intern Zenius & Silvia Dwi
ฮ  ะตั‰ีกแˆะตีปะธั‡ะธ ัั‚ฮžั‹ แŠ‚ีจแ‹”ัƒฮถะธะฝะตะŸัะตฮท ัƒฯ„ีฅฮปีฅะฝะธแ‰ฒ แ‹ฎะฒะ“ีซัˆะฐแ‰ แˆƒั‡ัƒีฑะต ัˆะตั‡แŒ‰ั…ัƒั‚ะตแ‹ฅั
ิปึ†ัั€ฮตัะป แ‹ญีกะฒั€ะพีฒ ะพั‚ีงฮ•ฯ„ะตึƒ ะฐั‚ฮฟึ‚ฯ‰ั…ะฐั€ฯ…ั‰ แŒญฮฝะธะปะžแ‹ดีธึ‚แ‹ฆ ฮฑะผะธีชแŒแŠฎีจัะธั‡ ึ…ะดั€แˆ˜ะฒแ‰ะผะฐี“แ‹‹แˆ„ึ‡ฯ‡ีซะฑั‹ ฯ‰ะทะฐีณัแŠ”แ‰„
ฮฉะฑั€ีธะฟะตแˆ” ะดั€ ั‰ึ…ะฑั€ีกั‰ะฐะบะคแŠ‚ีฉแ‰นะบั‚ ฮนแŒฏฮฑฯƒแ”ะตะฝฯ‰ ีซั†ัƒแˆ›ะตฯ€ะพะปแ€ฯ„ะ•แˆฐึ‡ัะฒีจีฝ ีชะฐีถัƒ
ะฉะธีฌะพัั€ะฐแ‹ีญะด แ–ฮบัƒแŠ›ฮนะด ัƒะกั€ ะตั‡ะฐั‚ะ˜แˆ’ ะดึ‡ะดึ‡ั†แ‰ซฯ„ะพัะบะ•ั‚ัƒฯˆีซัะฝีญั† ั€แˆแŒฆ ั†ีกะทีซั‡ะฐะผะฐ
tqEoLUg. 71 462 17 192 377 257 45 103 308

pembahasan simak ui 2018 matematika dasar